y

Cocoa Scripting

Session 303

s

Cocoa Scripting

Mark Piccirelli
Cocoa Frameworks Group

What You'll Learn

* The basics of Cocoa Scripting, if you have
not used it yet

* What scripting commands and classes are
already provided by Cocoa

* How to declare new scripting classes

* How to implement scripting classes

What You'll Learn (Cont.)

* The types you can use in scripting suites
* New features
* Future directions

Cocoa Scripting Basics

* AppleScript presents scriptability as commandls
and classes that are grouped into suites

* Applications handle commands

* Applications expose instances of
scriptable classes

Cocoa Scripting Basics

What Cocoa does for you

* Gives you a way to declare commands
and classes

* Handles incoming Apple events, converts
them to command objects, and executes the
command objects

* Declares and implements most of the Standard
Suite and Text Suite commands and classes

Cocoa Scripting Basics

What your application must do

* Include an NSAppleScriptEnabled entry
in its Info.plist

* [nclude files in its bundle to declare
scripting suites

* Provide methods to handle custom commands
* Provide accessor methods in scriptable classes

Files in the App’s Bundle

.scriptSuite and .scriptTerminology files

* Parallel property lists

* scriptSuite declares scripting model and

mappings to O

jective-C classes and methods

e scriptTermino

ogy contains human-readable

names and descriptions

* Cocoa automatically parses them both and
creates 'AETE' data at run time

Files in the App’s Bundle

.scriptSuite and .scriptTerminology files

* Each contains a Commands dictionary
* Each contains a Classes dictionary

* scriptSuite also contains AppleEventCode and
(programmatic) Name entries

* scriptT e.rminolo%/ also contains human-readable
Description and Name entries

* Other stuff to support custom value types

Commands

Declare them in the .scriptSuite file

* AppleEventClassCode and AppleEventCode

* Arguments

* AppleEventCode and Type for each argument
* ResultAppleEventCode

* Type (of the return value)

* CommandClass

CommandClass?

* The name of an Objective-C subclass of
NSScriptCommand (or NSScriptCommand itself)

* Scripted operations are sent to scriptable
applications via Apple events

* Cocoa converts each scripting Apple event
to an instance of the Corﬁmand&gss, and
then sends the command object an
-executeCommand message

* Subclassing NSScriptCommand often is not
necessary

Commands

Declare them In the .scriptTerminology file too

* Human-readable Description
* Human-readable Name

* Arguments—the exact same set as in the
scriptSuite file

* Human-readable Description and Name
for each argument

Example

The Close command

* Part of the AppleScript Standard Suite

* Declared in the Foundation framework’s
NSCoreSuite.scriptSuite and
NSCoreSuite.scriptTerminology files

* Encapsulation and default implementation

provided by Foundation’s NSCloseCommand
class

* AppKit’s NSDocument knows how to handle it

Built-in Commands

Cocoa takes care of the basics

* The Standard Suite declares commands: open,

print, quit, close, save, count, delete, duplicate,
exists, make, move, etc.

* Foundation and AppKit provide implementations
for all of these—NSCountCommand,
NSDeleteCommand, etc.

* Foundation provides implementations of the
all-important get and set commands too—
NSGetCommand and NSSetCommand

Built-in Commands

Cocoa takes care of the basics

*Your scriptable classes have to work with
Foundation’s standard command classes

* Key Value Coding

*You shouldn’t have to declare many
new commands

Classes

Declare them in the .scriptSuite file

* Superclass
* AppleEventCode

* Attributes (correspond to AppleScript
properties)

* ToManyRelationships (elements)

* AppleEventCode, ReadOnly, and Typ ¥
for each attribute and to- many relationship

* SupportedCommands
* (ToOneRelationships)

Classes

Declare them in the .scriptSuite file

* Class name should virtually always be an
Objective-C class name, e.g., “NSWindow”

* Superclass name should be name of class in
same suite, or suite-specified name of class in
other suite e.g., “NSCoreSuite. NSWindow”

Classes

Declare them in the .scriptTerminology file too

* Human-readable Description
* Human-readable Name and PluralName

e Attributes—the exact same set as in the
scriptSuite file

* Human-readable Description and Name
for each attribute

Example

A page setup class

* TextEdit document page setup should
be scriptable

* [et’s look at the declarations to add it

Demo

Built-in Classes

Cocoa takes care of the basics

* Standard Suite classes: application,
document, window

* Text Suite classes are implemented by
NSTextStorage

* Subclassing just to add scripting properties

and elements is unnecessary with Objective-C;
use categories

Command Execution

What’s in an NSScriptCommand?

*Virtually everything from the Apple event, but
in a different form

* An object specifier for the receiver(s) of
the command

* Arguments, some of which might also be object
specifiers, some of which might be value objects

* Object specifiers are instances of subclasses of
NSScriptObjectSpecifier

Object Specifiers

NSScriptObjectSpecifier and its subclasses

* AppleScript references:
word 4 of text of front document

* Become NSScriptObjectSpecifer chains:
NSIndexSpecifier (word 4) ==
NSPropertySpecifier (text) mmp
NSIndexSpecifier (document 1)

Object Specifiers

NSScriptObjectSpecifier and

its subclasses

* Cocoa has an NSScriptObjectSpecifier subclass
for every AppleScript reference form:

e [ndex reference = NSInd

exSpecifier

* Property Reference =» NSPropertySpecifier

* Range reference =» NSRangeSpecifier
* Name reference =» NSNameSpecifier

* Ltc.

Object Specifiers

NSScriptObjectSpecifier and its subclasses

* Object specifiers are evaluated during
command execution

* Actual objects are found

* Containers are asked for attribute values
and relationship objects

Command Execution

What are the steps?

* Evaluation of the receivers object specifier
* Evaluation of any argument object specifiers

* Send the command to each receiver if they

handle it (according to SupportedCommands in
the receiver class’ .scriptSuite declaration)

* More likely, invoke the script command’s
-performDefaultImplementation method

Command Execution

How do Foundation’s commands work?

* Most of Foundation’s NSScriptCommand
subclasses override
-performDefaultImplementation

*Your classes don’t have to explicitly support
these commands (get, set, make, move, etc.)

* Make your classes conform to Key Value Coding,
and we’ll do the rest

Key Value Coding (KVC)

* KVC lets us invoke methods in your class,
without knowing their names

* KVC lets you write your scripting support
methods in a natural way

* NSScriptObjectSpecifier uses KVC to find
specified objects during evaluation

* NSGetCommand, NSSetCommand,
NSMoveCommand, etc. all use KVC

* A great use of Objective-C’s dynamism

KVC for Scriptable Attributes

Implement get-accessors in classes with attributes

* Your objects will be sent -valueForKey:attributeName
MESsages

e attributeName will be the string used to declare the
attribute in the .scriptSuite file

* You could override -valueForKey:

* Better yet, implement atz‘rzbuteName methods;
NSOb]ect valueForKey:| will invoke them

* Return an obéect of the type declared for the attribute
in the .scriptSuite file

KVC for Scriptable Attributes

Set-accessors in classes with writable attributes

*Your objects will be sent

-takeValue:value forKey:attributeName messages
for setting of non-read-only attributes

* Implement -setAttributeName: methods
* The object’s type isn’t guaranteed, so check

Example

A page setup class

*Let’s look at the code to implement
the scriptability we've already declared

Demo

KVC for To-Many Relationships

Get-accessors in classes that contain elements

*Your objects will be sent
-valueForKey:relationshipName messages

* relationshipName will be the string used to
declare the relationship in the .scriptSuite file

* Implement -relationshipName: methods
* Return an array of objects

KVC for To-Many Relationships

Get-accessors in classes that contain elements

* Your objects may be sent -valueAtIndex:index
inPropertyWithKey:relationshipName messages

* Implement -valuelnRelationshipNameAtIndex:
methods

* Return a single object

* Potentially much more efficient than creating an
array to return from -relationshipName: methods

KVC for To-Many Relationships

Get-accessors in classes that contain elements

* There are now -valueWithName:inPropertyWithKey:
and -valueWithUniquelD:inPropertyWithKey:
messages too

* Implement -valuelnRelationshipNameWithName:
and -valuelnRelationshipNameWithUniquelD:
methods

* Return a single object
* Used for elements that have name and ID properties

KVC for To-Many Relationships

Set-accessors in classes that contain elements

* Three more possible messages:

o -replaceValueAtIndex:inPropertyWithKey:withValue:
« -insertValue:atIindex:inPropertyWithKey:
« removeValueAtIndex:fromPropertyWithKey:

*You implement:
« -replacelnRelationshipName:atIndex:
e -insertInRelationshipName:atIndex:
« -removelnRelationshipName:atIndex:

Initialization for Element Classes

* Some classes can be instantiated with the
Make command

* Make sure script-creatable classes have good
-init methods

* Make sure script-creatable classes have good
attribute set-accessors, so that Make’s “with
properties” argument works

* Make sure possible containers for such classes
have -replacelnRelationshipName:atIndex: and
-insertInRelationshipName:atIndex: methods

¢

Object Specifier Support

*Your scriptable object may be sent an
-objectSpecifier message

* Right after initialization, during execution
of a Make command

* As the result of a Get command

* Return an instance of one the subclasses of
NSScriptObjectSpecifier; e.g. NSIndexSpecifier,
NSNameSpecifier, NSUniquelDSpecifier

* Might have to ask the container for its object specifier

Types in .scriptSuite Files

* Class attributes, class relationships, command
arguments, command results all must have
declared types

* Scriptable class names
* Selected Foundation class names
* Some more complicated things

Types in .scriptSuite Files

Scriptable class names

* Names of classes declared in the same
scriptSuite file are fine

*So are classes declared in other .scriptSuite files

suite-s Npecnfy the name like this:
suiteName.className

*You can use the classes declared in Foundation’s
NSCoreSuite

Types in .scriptSuite Files

Selected Foundation class nhames

* NSString — AppleScript “unicode text”
* NSDate — “date”
* NSArray (big bug fixed!) — “list”

* NSDictionary (support for user records is
improved) — “record”

* NSScriptObjectSpecifier — “reference”
* NSPositionalSpecifier — “location reference”

Types in .scriptSuite Files

Different kinds of NSNumber

*E.g., NSNumber <Bool> — “boolean”
* NSNumber<Int> — “integer”

* NSNumber<Double > — “real”

* ktc.

Types in .scriptSuite Files

One more kind of NSNumber

e NSNumber <enumerationName >

* Supports AppleScript enumeration types, €.g.,

for the Close command’s saving parameter—
“ask, yes, no”

* scriptSuite and .scriptTerminology files have
Enumerations dictionaries too

NSNameSpecifier

New!

* Supports AppleScript’s name reference form

*L.2., window named “Cocoa Scripting”

* Must be an attribute with an AppleEventCode
of 'pnam’

* Your container class should have
-valuelnRelationshipNameWithName:

* Often the fastest way to find one of a large
number of named elements

NSUniquelDSpecifier

New!

* Supports AppleScript’s ID reference form

*L.g., window 783

* Must be an attribute with an AppleEventCode
of 'ID '

*Your container class should have
-valuelnRelationshipNameWithUniquelD:

The Properties Property

New!

* Good scriptable apps make all object properties
available in a “properties” record

*You don’t have to do anything

* Public -scriptingProperties and
-setScriptingProperties: methods, just in case

[Implicitly Specified Subcontainers

New!

* Used to have to write:
fourth word of text of front document

* Better to let scripters write:
fourth word of front document

* New DefaultSubcontainerAttribute entry allowed
in .scriptSuite class descriptions

NSAppleEventDescriptor

New methods

* A few places where NSAppleEventDescriptor
shows in Cocoa’s API

e New creation methods like

+descriptorWithBool:, +descriptorWithString:,
etc.

* New accessor methods like -boolValue,
-stringValue, etc.

NSAppleScript

New!

* At last, execute scripts without using Carbon API
* Can initialize from file, including compiled scripts
* Can initialize from source code

* Compile, execute, etc.

* Can even return source code as pretty-printed
rich text

Release Notes

*Very Detailed!

* Cocoa Scripting release notes are on
your Jaguar CD

/Developer/Documentation/ReleaseNotes/Foundation.html

Future Directions

* Start using AppleScript’s new XML-based .sdef
suite definition format

* Even before then, more attractive scripting
dictionaries (categories, orders)

* Better type checking
* Much better error reporting

Future Directions

* Cocoa API for sending Apple events
* Better integration with undo

* Stop asking objects for their object specitiers;
ask objects’ containers instead

* Recordability, recordability, recordability . . -

Roadmap

106 AppleScript Update Room C
General scripting news Wed., 9:00am
902 AppleScript Studio Intro Civic Center
A big user of Cocoa Scripting Wed., 3:30 pm
FF007 AppleScript: Room J1

General scripting issues

Thurs., 3:30 pm

FFO016 Cocoa:
Cocoa-specific issues

Room A1
Fri., 5:00 pm

Who to Contact

Heather Hickman

Cocoa Technology Manager
hhickman@apple.com

’

http:/developer.apple.com/wwdc2002/urls.html .

Documentation

Designing a scriptable application

* Topic: Application Architecture
 Overview, concepts
o Links to related class reference

Documentation >Mac OS X > Cocoa > Program Design
http:/developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html

’

Documentation

Implementing a scriptab

* Topic: Scriptable App.

le application

1cations

 OQverview, conce

DS, programming tasks

e Links to scripting class reference
e Links to other AppleScript documentation

Documentation >Mac OS X > Cocoa > Program Design
http:/developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html

Documentation

An oldie but goody

* “Designing a Scripting Implementation” by Cal
Simone—Develop Issue 21 (March 1995!)

* Great guidelines for designing an app’s
scriptability

e Some advice about four-character codes

http:/developer.apple.com/dev/techsupport/develop/bysubject/iiac.html

For More Information

* Cocoa Developer Documentation
http://developer.apple.com/techpubs/macosx/macosx.html

*iServices Technical Trainin
http://www.apple.com/iservices/technicaltraining

* O'Reilly Network: AppleScripting Mac OS X
http:/www.oreillynet.com/pub/ct/47

* Other places
- www.stepwise.com
- WWW.omnigroup.com
- www.cocoadevcentral.com

SuiteModeler

by Don Briggs

* A neat shareware app for editing .scriptSuite and
scriptTerminology files, among other things

* Good at flagging mistakes and conflicts
* Check out the EZCocoaAppleScript tutorial too

http://homepage.mac.com/donbriggs

Heather Hickman
Cocoa Technology Manager
hhickman@apple.com

http://developer.apple.com/wwdc2002/urls.html

& WWDC2002

& WWDC2002

& WWDC2002

